1. Tachometer feedback in a D.C. position control system enhances stability (T/F).

[GATE 1994: 1 Mark]

Soln. The tachometer feedback is a derivative feedback. Thus it adds zero at origin. Hence stability is improved.

2. The transfer function of a linear system is the

- (a) ratio of the output, V0(t) and input Vi(t).
- (b) ratio of the derivatives of the output and the input.
- (c) ratio of the Laplace transform of the output and that of the input with all initial conditions zeros.
- (d) none of these

[GATE 1995: 1 Mark]

Soln. The transfer function of a linear system is the ratio of Laplace transform of the output and input with all initial conditions zero

Ans: Option (c)

3. The transfer function of at tachometer is of the form

- (a) Ks
- (b) K/s
- (c) K/(S+1)
- (d) K/S(s+1)

[GATE 1998: 1 Mark]

Soln. The transfer function of a tachometer is of the form ks, it adds zero at the origin

Ans: Option (a)

4. An electrical system and its signal-flow graph representations as shown in the figure (a) and (b) respectively. The values of G2 and H respectively, are

(a)
$$Z_3(S)/Z_2(S)+Z_3(3)+Z_4(S)$$
, $-Z_3(S)/Z_1(S)+Z_3(S)$

(b)
$$-Z_3(S)/Z_2(S)-Z_3(3)+Z_4(S)$$
, $-Z_3(S)/Z_1(S)+Z_3(S)$

(c)
$$Z_3(S)/Z_2(S)+Z_3(3)+Z_4(S)$$
, $Z_3(S)/Z_1(S)+Z_3(S)$

[GATE 2001: 2 Marks]

Soln. The values of G2 and H?

$$V_1(s) = I_1(s)[Z_1(s) + Z_3(s)] - I_2(s)Z_3(3)$$

$$\frac{V_1(s)}{[Z_1(s) + Z_3(s)]} = I_1(s) - \frac{I_2(s)Z_3(s)}{Z_1(s) + Z_3(3)} -----(I)$$

In second loop: $[I_2(s) - I_1(s)] Z_3(s) + I_2(s) [Z_2(s) + Z_4(s)] = 0$

or $I_2(s)[Z_2(s)+Z_3(s)+Z_4(s)]=I_1(s)Z_3(s)$

$$G_2(s) = \frac{I_2(s)}{I_1(s)} = \frac{Z_3(s)}{Z_2(s) + Z_3(s) + Z_4(s)} -----(II)$$

Fro FG $V_1G_1(s)+I_2(s)$ $H(s)=I_1(s)$

$$V_1G_1(s)=I_1(s)-I_2(s) H(s)$$

Comparing with----- (I)

$$G_1(s) = \frac{1}{Z_1(z) + Z_3(s)}$$
, $H(s) = \frac{Z_3(s)}{Z_1(s) + Z_3(s)}$
Ans: Option (c)

5. The open-loop DC gain of a unity negative feedback system with closed-loop transfer $S\!+\!4$

Function $\frac{1}{s^2+7S+13}$ is

(a)
$$4/13$$

(b)
$$4/9$$

[GATE 2001: 2 Marks]

Soln.

Closed loop transfer function =
$$\frac{(s)}{1+G(s)H(s)}$$

$$\frac{G(s)}{1+G(s) H(s)} = \frac{s+4}{s^2+7s+13}$$

$$\frac{1+G(s) H(s)}{G(s)} = \frac{s^2+7s+13}{s+4}$$

H(s)=1 for unity feedback

$$\frac{1}{G(s)} = \frac{s^2 + 7s + 13}{s + 4} - 1 = \frac{s^2 + 6s + 9}{s + 4}$$

$$G(s) = \frac{s+4}{s^2+6s+9}$$

for DC, s = 0,

$$G(s) = 4/9$$
, Ans:Option (b)

6. A system described by the following differential equation $\frac{d^2y}{dt^2} + 3\frac{dy}{dt} + 2y = x(t)$ is initially at rest. For input x(t)=2u(t), the output y(t) is

(a)
$$(1-2e^{-t}+e^{-2t})(t)$$

(b)
$$(1+2e^{-t}-2e^{-2t})(t)$$

(c)
$$(0.5+e^{-t}+1.5e^{-2t})u(t)$$

(d)
$$(0.5+2e^{-t}+2e^{-2t})u(t)$$

[GATE 2004: 2 Marks]

Soln.
$$\frac{d^2 y}{dt^2} + 3 \frac{dy}{dt} + 2y = (t)$$

$$x(t)=2u(t)$$

Taking Laplace Transform

$$s^{2}y(s)+3s(s)+2y(s) = \frac{2}{s}$$

$$(s^{2}+3s+2) y(s) = \frac{2}{s}$$

$$y(s) = \frac{2}{s(s+2)(s+1)} = \frac{A}{s} + \frac{B}{s+2} + \frac{C}{s+1} = \frac{1}{s} + \frac{1}{s+2} - \frac{2}{s+1}$$

$$y(t) = [1 + e^{-2t} - 2e^{-t}]u(t)$$

Ans:Option (a)

7. In the system shown below, $x(t) = (\sin t)u(t)$. In steady-state, the response y(t) will be

(a)
$$\frac{1}{\sqrt{2}} sin \left(t - \frac{\pi}{4}\right)$$

(c) $\frac{1}{\sqrt{2}} e^{-t} sin t$

(b)
$$\frac{1}{\sqrt{2}} \sin(t + \frac{\pi}{4})$$

(c)
$$\frac{\sqrt{2}}{\sqrt{2}} e^{-t} \sin t$$

(d)
$$\sin t - \cos t$$

[GATE 2006: 1 Mark]

Soln.

$$x(t) \longrightarrow \frac{1}{s+1} \longrightarrow y(t)$$

$$x(t) = \sin t u(t)$$
, $\omega = 1 rad/sec$

$$y(t) = x(t) * h(t)$$

$$y(s) = x(s) H(s)$$

$$H(s) = \frac{1}{s+1}$$

$$H(s) = \frac{1}{s+1}$$

$$H(j\omega) = \frac{1}{j+1} = \frac{1}{\sqrt{2}} tan^{-1} \angle -45^{0} \quad as \quad \omega = 1 \ rad/sec$$

$$(t) = \sin t \, (t)$$

$$(t) = \sin t (t)$$

 $(t) = \frac{1}{\sqrt{2}} \sin (t - \frac{\pi}{4})$

Ans: Option (a)

8. The unit-step response of a system starting from rest is given by $c(t) = 1 - e^{-2t}$ for $t \ge e^{-2t}$ 0 The transfer function of the system is

(a)
$$\frac{1}{1+2s}$$

(b)
$$\frac{2}{2+s}$$

(c)
$$\frac{1}{2+s}$$

$$\frac{2s}{1+2s}$$

[GATE 2006: 2 Marks]

Soln. The unit step response of a system starting from rest

$$c(t)=1-e^{-2t}$$
 for $t\geq 0$

$$c(s) = \frac{1}{s} - \frac{1}{s+2}$$

$$c(s) = \frac{2}{s(s+2)}$$

Input
$$\rightarrow$$
unitstep= $\frac{1}{2}$

Input
$$X H(s) = c(s)$$

$$H(s) = C(s)$$

$$\begin{array}{ccc}
s & s(s+2) \\
H(s) = & 2
\end{array}$$

$$H(s) = \frac{2}{s(s+2)} \times s$$

$$H(s) = \frac{\frac{2}{2}}{2+s}$$

Ans: Option (b)

10. The unit impulse response of a system is $h(t)=e^{-t},t\geq 0$ For this system, the steady-state value of the output for unit step input is equal to

(a)
$$-1$$
 (b) 0

[GATE 2006: 2 Marks]

Soln. The unit impulse response of a system is h(t)=e-t, $t\geq 0$

The steady state value of the output for unit step input

$$H(s) = \frac{1}{s_1 + s_2}$$

$$X(s) = \frac{1}{s}$$

Output
$$Y(s) = X(s)H(s)$$

$$Y(s) = \frac{1}{s(s+1)}$$

$$Y(s) = \frac{1}{s} - \frac{1}{s+1}$$

$$y(t) = (1 - e^{-t})$$
When $t \to \infty$ (stady state), output = 1
Ans: Option (c)

11. A linear, time-invariant, causal continuous time system has a rational transfer function with simple poles at s = -2 and s = -4, and one simple zero at s = -1. A unit step u(t) is applied at the input of the system. At steady state, the output has constant value of 1. The impulse response of this system is

(a)
$$[(-2t) + \exp(-4t)] u(t)$$

(b)
$$[-4 \exp(-2t) + 12 \exp(-4t) - \exp(-t)]u(t)$$

(c)
$$[-4 \exp(-2t) + 12 \exp(-4t)]u(t)$$

(d)
$$[-0.5 \exp(-2t) + 1.5 \exp(-4t)]u(t)$$

[GATE 2008: 2 Marks]

Soln. Transfer function

$$H(s) = \frac{K(s+1)}{(s+2)(s+4)}$$
Input R(s) = $\frac{1}{s}$

Input
$$R(s) = \frac{1}{s}$$

Output
$$Y(s) = (s) H(s)$$

$$\lim_{t\to\infty} f(t) = \lim_{s\to 0} SF(s) = 1$$

or
$$\lim_{s\to 0} SC(s) = 1$$
, $C(s) = \frac{K(s+1)}{(s+2)(s+4)}$

$$\lim_{s \to 0} \frac{K(s+1)}{(s+2)(s+4)} = 1$$

$$\frac{k}{8} = 1$$
$$k = 8$$

$$\ddot{k} = 8$$

$${8 \atop k = 8}$$

$$H(s) = \frac{8(s+1)}{(s+2)(s+4)} = \frac{-4}{(s+2)} + \frac{12}{(s+4)}$$

$$h(t) = (-4e^{-2t} + 12e^{-4t})ut$$

which is the impulse response of the system

Ans: Option (c)

12. A system with the transfer function (S) (S) = $\frac{S}{S+P}$ has an output (t) = $\cos(2t - \frac{\pi}{3})$ for the input signal $(t) = p \cos(2t - \frac{\pi}{2})$. Then, the system parameter 'p' is

- (a) $\sqrt{3}$

- (c) 1 (d) $\frac{\sqrt{3}}{2}$

[GATE 2010: 1 Mark]

Soln.

$$\frac{y(s)}{x(s)} = \frac{s}{s+p} = \frac{j\omega}{j\omega + P} , \phi = 90^{0} - tan^{-1} \frac{\omega}{p}$$

$$y(t) = \cos\left(2t - \frac{\pi}{3}\right), = 2 \, rad/sec$$

$$x(t) = p \cos\left(2t - \frac{\pi}{2}\right)$$

$$x(t) = p\cos\left(2t - \frac{3}{2}\right)$$

Phase difference between input and output
$$\phi = -\frac{\pi}{3} - (-\frac{\pi}{2})$$

$$= \frac{\pi}{2} - \frac{\pi}{3}$$

$$= 90 - 60 = 30^{\circ}$$

For the transfer function $\phi = 90^{\circ} - tan^{-1} \frac{\omega}{p}$

$$30^{0} = 90^{0} - tan^{-1} \frac{\omega}{p}$$
$$tan^{-1} = 60^{0}$$

$$\frac{2}{p} = \frac{3}{1}$$

$$P=\frac{2}{\sqrt{3}}$$

Ans: Option (c)